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Stieltjes Integrals of Ho� lder Continuous Functions with
Applications to Fractional Brownian Motion
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We give a new estimate on Stieltjes integrals of Ho� lder continuous functions and
use it to prove an existence-uniqueness theorem for solutions of ordinary dif-
ferential equations with Ho� lder continuous forcing. We construct stochastic
integrals with respect to fractional Brownian motion, and establish sufficient
conditions for its existence. We prove that stochastic differential equations with
fractional Brownian motion have a unique solution with probability 1 in certain
classes of Ho� lder-continuous functions. We give tail estimates of the maximum
of stochastic integrals from tail estimates of the Ho� lder coefficient of fractional
Brownian motion. In addition we apply the techniques used for ordinary Brownian
motion to construct stochastic integrals of deterministic functions with respect
to fractional Brownian motion and give tail estimates of its maximum.

KEY WORDS: Fractional Brownian motion; stochastic differential equa-
tions; Stieltjes integrals.

1. INTRODUCTION

Fractional Brownian motion (fBm) was first introduced by Kolmogorov in
1940(1) and later studied by Le� vy and Mandelbrot.(2, 3)

Let (0, F, P) be a probability space, and : # R, |:|<1 be a parameter.
FBm with exponent a is a self-similar, centered Gaussian random process
!:(t, |), (t, |) # [0, �)_0 (often abbreviated as !:(t)) with stationary
increments and the correlation function

E(!:(s), !:(t))=C(s1+:+t1+:&|s&t|1+:)

C=&
1 (1&:)

:
cos((1+:)�2) ?

((1+:)�2) ?
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For :=0 we recover the ordinary Brownian motion (oBm). From the form
of the correlation function of the increments

E(d!:(s), d!:(t))=C:(:+1)
ds dt

|s&t|1&:

one can see that fBm is not Markovian for all :{0. The trajectories of
fBm are almost surely Ho� lder-continuous with exponent less than (1+:)�2,
and not Ho� lder-continuous with exponent greater or equal to (1+:)�2.
The finite-dimensional distributions of fBm are scale-invariant:

\r, t>0, r&(1+:)�2!:(rt) =
dist !:(t)

The scale-invariance and long-range correlations make fBm important in
applications.

In recent years there has been much interest in fBm, see, for example,
refs. 4�14. The problem of the construction of stochastic calculus with
respect to fBm has been considered in refs. 15�17. The main difficulty is
that fBm fails to be a semi-martingale for all 0<:<1.(15) Our goal is to
construct the stochastic integrals with respect to fBm and to prove the
general existence-uniqueness theorem for solutions of stochastic differential
equations (SDE's) with fBm. Due to the strongly non-Markovian nature of
fBm, the most natural way to define the stochastic integral is to do it
pathwise, for a.e. |. This brings us to the question of existence of Stieltjes
integrals with respect to Ho� lder continuous functions and of the existence
and uniqueness of solutions of ODE's with Ho� lder continuous forcing
(Section 2). The existence of Stieltjes integrals with respect to Ho� lder con-
tinuous functions was established in refs. 18 and 19. Below we use the
methods of Renormalization group to prove a formula (Theorem 2) which
allows us to estimate the L�-norm of the Stieltjes integral. We then use this
estimate to prove the general existence-uniqueness theorem for solutions of
ODE's with Ho� lder continuous forcing. In Section 3 we apply these results
to construct the stochastic integrals with respect to fBm and show the
existence and uniqueness of solutions of stochastic differential equations
with fBm. Previous results in this direction were obtained by refs. 15
and 16. In Section 4 we use Theorem 2 to get estimates on the tails of the
stochastic integral with respect to fBm. We also consider the question of
existence of fBm stochastic integral of deterministic functions and derive
the probability distribution of its maximum. Throughout the paper, C ;(I )
denotes the space of Ho� lder-continuous functions on the interval I with
exponent ;. We will have many occasions to partition an interval into
2n sub-intervals of equal size; the i th partition point of the interval under
discussion is denoted by sn

i , and we put 2f (s+sn
i )= f (s+sn

i+1)& f (s+sn
i )

if f is a function defined on the interval.
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After this paper was accepted by Journal of Statistical Physics, the
author learned by personal communication from L. Decreusefond about
refs. 26 and 27. In ref. 26 results related to Theorem 1 and Corollary 5.1
of this paper and are proved via a different approach. In ref. 27 results
related to Theorem 1 and Lemma 2.1 are proved via a different approach
and a solution of a linear stochastic differential equation with fBm: dX(t)=
aX(t) d!:(t)+bX(t) dt is constructed.

2. MAIN THEOREMS

In this section we consider the question of existence of a Stieltjes
integral for functions of unbounded variation, give a formula which allows
to estimate its upper bound and prove the existence-uniqueness theorem
for ordinary differential equations with Ho� lder continuous forcing.

In applications (such as the construction of the stochastic calculus
for fBm), it is often interesting to consider Stieltjes integrals � f dg for func-
tions of unbounded variation. The difficulty in constructing the integral is
that the upper bounds on Riemann sums � | f | |2g| diverge. However this
problem can be solved on certain classes of f, g, since, if g oscillates fast
enough, the nearby terms in the Riemann sum � f 2g may cancel. It is
shown in refs. 18 and 19 that the Stieltjes integral exists on certain classes
of Ho� lder continuous functions.

Theorem 1 (Young-Kondurar). Let f # C ;(R), g # C#(R). If
;+#>1, then �t

0 f dg exists as a Stieltjes integral for all t>0.

Generalizations of Theorem 1 can be found in ref. 20.
The next formula is useful in estimating the L�-norm of the Stieltjes

integral and is the main tool used in this paper.

Theorem 2. Let f, g, ;, and # be as in Statement 1. Then

|
t

s
f ({) dg({)= f (s)(g(t)& g(s))+ :

�

k=1

:
2k&1&1

i=0

2f (s+sk
2i) 2g(s+sk

2i+1). (1)

As far as we know this form of the Stieltjes integral has not appeared
before. The idea behind the proof of Theorem 2 is to write a recursion
between the Riemann sums on finer partitions of the interval and the
Riemann sum on coarser partitions of the interval, very much like in
Renormalization group. The same idea is used in ref. 21 to give a new proof
of Theorem 1, which amounts to showing that the right hand side of the
Eq. (1) does not depend on the sequence of partitions we choose. Below we
will need the change of variables formula which is a deterministic analog
of the Itô's formula for Brownian motion.
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Lemma 2.1. Let u: [0, �)_R � R, e, f : [0, �) � R, 1>#> 1
2 ,

;>1&#, T>0. Suppose f # C ;([0, T ]), g # C #([0, T ]), e is continuous,
u is differentiable in t with continuous �u��t and twice differentiable in x.
For 0�t�T, consider the Stieltjes integral

'(t)='(0)+|
t

0
e(s) ds+|

t

0
f (s) dg(s).

Then for all 0�t�T, v(t)=u(t, '(t)) is also a Stieltjes integral whose
differential is

dv=
�u
�t

dt+
�u
�'

d'. (2)

Note that for #> 1
2 , the change of variable formula is the same as in the

case of ordinary calculus. This follows from the fact that the quadratic
variation of g is zero and therefore the terms of order d'2 are negligible.

Theorems 1 and 2 can be used to prove the following general theorem
on the existence and uniqueness of solutions of ordinary differential equa-
tions with Ho� lder continuous forcing.

Theorem 3. Let b, _: [0, �)_R � R, g # C#(R) and 1�2<#�1.
Suppose b is globally Lipschitz in t and x, and _ # C1(R) with _, _$t , _$x
globally Lipschitz in t and x. Then for every T>0 and #>;>1&#, the
ordinary differential equation

dx(t)=b(t, x(t)) dt+_(t, x(t)) dg(t), x(0)=x0 (3)

has a unique solution in C ;([0, T ]).

3. APPLICATIONS TO FRACTIONAL BROWNIAN MOTION

The natural way of constructing the fBm stochastic integral
�t

0 f ({, |) d!:({, |) is to define it as a Stieltjes integral for a.e. |. Since
!:({, |) # C#(R) for #�(1+:)�2 with probability one, Theorem 1 implies
that the fBm stochastic integral �t

0 f ({, |) d!:({, |) exists for all f # C ;(R)
with ;>(1&:)�2. The paper(15) contains a special case of this result for
functions f (!:( } , |)) # C1(R) for a.e. |, derived by expanding f in Taylor
series in !: and using the fact that the quadratic variation of !: is zero.

Similarly, Theorem 2 holds with probability one for � t
0 f ({, |) d!:({, |)

for all f # C ;(R) with ;>(1&:)�2.
Itô's formula for fBm can be stated pathwise, as a corollary of

Lemma 2.1, however it can be stated also under weaker assumptions. Itô's
formula for fBm has been established under very different assumptions in
ref. 16 for 0<:<1, and in ref. 17 for &1<:<1.
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Lemma 3.1. Let u: [0, �)_R � R, e, f : [0, �)_0 � R, 0<:<1,
;>(1&:)�2, T>0. Suppose f # C ;([0, T ]), e is continuous, u is differ-
entiable with continuous �u��t and �u��x # C #([0, T ]). For 0�t�T,
consider the stochastic integral

'(t, |)='(0, |)+|
t

0
e(s, |) ds+|

t

0
f (s, |) d!:(s, |).

Suppose sup0�t�T E((�2u�(�')2)(t, '(t, |)))2<�. Then for all 0�t�T,
v(t)=u(t, '(t, |)) is also a stochastic integral whose differential is

dv=
�u
�t

dt+
�u
�'

d'.

Note that for 0<:<1, Itô's formula for fBm is the same as in the deter-
ministic case. This follows from the fact that the quadratic variation of fBm
is zero. Theorem 3 implies the following existence-uniqueness theorem for
SDE's with fBm:

Theorem 4. Let b, _: [0, �)_R � R, Z: 0 � R and 0<:<1,
(1&:)�2<;<(1+:)�2. Suppose b is globally Lipschitz in t and x, and
_ # C1(R) with _, _$t , _$x globally Lipschitz in t and x. Then for every T>0
the SDE

dX(t, |)=b(t, X(t, |)) dt+_(t, X(t, |)) d!:(t, |), X(0, |)=Z(|)

(4)
has a unique solution in C ;([0, T ]) with probability 1.

In refs. 15 and 16, the existence and uniqueness theorem for solutions
of stochastic differential equations was proved when the diffusion coef-
ficient is a function of time t only; in ref. 15, the existence theorem was
proved also when the drift and diffusion coefficients are functions of X only.
Both papers adapt the methods used for oBm. The new idea in this paper
is to use the formula in Theorem 2, which allows us to prove the existence
and uniqueness theorem in the general case, when the drift and diffusion
are functions of both t and X.

4. ADDITIONAL RESULTS FOR FRACTIONAL BROWNIAN
MOTION

When the integrand is of the form f ({, !:({, |)), we can obtain
estimates of the tail of the maximum of stochastic integrals from Theorem 2
and from tail estimates of the Ho� lder coefficient of fBm.
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Theorem 5. Let f : [0, 1]_R � R and 1
2<#<(1+:)�2, $=

(1+:)�2&#. Suppose f is differentiable with bounded | f $t(t, x)|, | f $x(t, x)|.
Write | f $t |=sup[0, 1], R | f $t(t, x)| and | f $x |=sup[0, 1], R | f $x(t, x)|. Then

P \ max
0�t�1 |

t

0
f ({, !:({, |)) d!:({, |)>*+

�
2#+1
2#&1 �

2
?

:
�

n=1

2(1&$) n

&
exp {&

2#&1
2#+1

&222n$&1= , (5)

where

&=
22#&1&1

| f $x | _�\ | f (0, 0)|+
| f $t |

2#+1&1+
2

+
4

22#&2
| f $x | *

&| f (0, 0)|&
| f $t |

2#+1&2& . (6)

More information on the stochastic integral is available when f is a func-
tion of t only, since in this case the techniques used for oBm can be
applied.

Statement 4.1. Let 0<:<1, and let f (t, |)= f (t) be a func-
tion of t only. If f # L2�(1+:)([0, �)), then the fBm stochastic integral
�t

0 f ({) d!:({, |) exists in L2([0, �)_0) for all t # [0, �).

The proof is based on the Hardy�Littlewood�Sobolev inequality (see
ref. 22).

Since �t
0 f ({) d!:({, |) is a Gaussian process, we can show the following

properties:

Statement 4.2. Let : and f be as in Theorem 4.1, and let 0<;<:.
Write qf (s, t)=� t

s � t
s f (u) f (v)(du dv�|u&v|1&:). If f # L2�(1+;)([0, 1]), then

1. for a.e. |, � t
0 f ({) d!:({, |) has a t-continuous version for all

t # [0, 1];

2. for every real r # [0, 1], P(max0�t�1 � t
0 f ({) d!:({, |)>*) is

bounded from above by

|
�

*r�- qf+
(0, 1)

+|
�

*(1&r)�- qf&
(0, 1) �

2
?

e&x2�2 dx, where f\=
| f |\ f

2
;
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3. for every integer m�2 and real *�- 1+log m4, P(max0�t�1

|� t
0 f ({) d!:({, |)|>*) is bounded from above by

|
�

*�c

5
2m2e&x2�2 dx

where c= sup
0�s, t�1

- qf (s, t)+(2+- 2) |
�

1
sup

|s&t|<m&x2
- qf (s, t) dx<�.

(1) follows from Kolmogorov's continuity criterion, the bound (2) follows
from Slepian's lemma, (23) and (3) follows from Fernique's inequality. (24)

5. PROOFS OF THEOREMS

5.1. Proof of Theorem 2

Proof. The idea of the proof is to write the Riemann sums on the
smaller scales in terms of the Riemann sums on the larger scales as in
Renormalization Group. Denote by S n( f ) the Riemann sum of f corre-
sponding to the partition of [0, 1] into 2n equal sub-intervals. We have

S n( f )=S n&1( f )+ :
2n&1&1

i=0

2f (sn
2i) 2g(sn

2i+1)

b

=S 0( f )+ :
n

k=1

:
2k&1&1

i=0

2f (sk
2i) 2g(sk

2i+1)

As n � �, Sn( f ) converges to � t
0 f ({) dg({) by Theorem 1. The right hand

side converges provided ;+#>1. K

5.2. Proof of the Change of Variables Formula

The proof given here follows ref. 25 for the most part.

Proof. We can write the integral version of Eq. (2):

v(t)&v(0)=|
t

0

�u
�s

ds+|
t

0

�u
�'

d'.
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From Theorem 2 and from continuity of e it follows that:

2'(t)= f (t) 2g(t)+e(t) 2t+O(2t) ;+#+o(2t).

v(t)&v(0)

= :
k�[2nt]

{u \ k
2n , ' \ k

2n++&u \k&1
2n , ' \ k

2n++=
+ :

k�[2nt]
{u \k&1

2n , ' \ k
2n++&u \k&1

2n , ' \k&1
2n ++=

+u(t, '(t))&u \[2nt]
2n , ' \[2nt]

2n ++
= :

k�[2nt]
{�u

�t \
k&1

2n , ' \ k
2n++ 1

2n+o \ t
2n+=

+ :
k�[2nt]

{�u
�' _

k&1
2n , ' \k&1

2n +&\' \ k
2n+&' \k&1

2n ++
+

1
2

�2u
�'2 \k&1

2n , ' \k&1
2n ++\' \ k

2n+&' \k&1
2n ++

2

+o(2'2)=
= :

k�[2nt] {\
�u
�t \

k&1
2n , ' \ k

2n++
+

�u
�' \

k&1
2n , ' \k&1

2n ++ e _k&1
2n &+ 1

2n+o \ t
2n+=

+ :
k�[2nt]

{�u
�' \

k&1
2n , ' \k&1

2n ++ f \k&1
2n +\ g \ k

2n+& g \k&1
2n ++

+
1
2

�2u
�'2 \k&1

2n , ' \k&1
2n ++ f \k&1

2n +
2

_ \g \ k
2n+& g \k&1

2n ++
2

+o(2g2)=
=|

t

0 \
�u
�s

+
�u
�'

e(s)+ ds+o(1)+|
t

0

�u
�'

f (s) dg(s)

+
1
2

:
k�[2nt]

u'' f 2 2g2+o \: 2g2+ .

Since u'' f 2 2g2�O(t�2n)2#, and #> 1
2 , �k�[2nt] u'' f 2 2g2 � 0 as n � �.

Similarly, o(� 2g2) � 0 as n � �. K
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5.3. Proof of Theorem 3: Local Existence and Uniqueness

In this section we will prove the local existence and uniqueness result.
We will derive the global result in Theorem 3 by showing that we can
apply the local existence and uniqueness result repeatedly, taking as an
initial condition the value of the solution at the end of the previous interval.

Fix T>0, s # [0, T ] and a # R. Define an integral operator

Ft X=|
t

s
b({, X({)) d{+|

t

s
_({, X({)) dg({)+a.

For s=0 and a=x0 , solutions of the ODE (3) are exactly fixed points of F.
For 0<;<1, and for =>0, consider the Banach space C ;([s, s+=])

with the norm & f &;=maxt | f (t)|+maxt1{t2
( | f (t1)& f (t2)|�|t1&t2 | ;). For

K>0, consider the closed subset C;
K ([s, s+=])=[ f : | f (t2)& f (t1)|�

K |t2&t1| ;, \t1 , t2 # [s, s+=]] of C ;([s, s+=]). Finally, consider the
closed subset C;

K([s, s+=], a)=[ f # C;
K([s, s+=]) : f (s)=a] of C ;([s,

s+=]). For a given g # C#([0, T ]), there is L>0 such that g # C#
L([0, T ]).

We will show by the contraction mapping theorem that for given T, s, a,
K, L, there exists =>0 such that Ft has a unique fixed point on C;

K ([s,
s+=], a). We need to establish that Ft maps C;

K ([s, s+=], a) into itself
and that it is a contraction. This will be done in Lemma 5.3. The necessary
preliminary estimates are obtained in Corollaries 5.1 and 5.2 of Theorem 2.
In what follows we will consider T, K, L>0 to be fixed.

Corollary 5.1. Let ; and # be as in Theorem 1, T>0 and let
g # C#

L([0, T ]). Then for every s, t # [0, T ],

"|
t

s
X({) dg({)"�

=L &X&; (t&s)# \1+
(t&s) ;

2 ;+#&2+ . (7)

Proof. By Theorem 2

} |
t

s
X({) dg({) }

�|X(s)| | g(t)& g(s)|+ :
�

k=1

:
2k&1&1

i=0

|2X(s+sk
2i)| |2g(s+sk

2i+1)|. (8)

Since |X(s)|�&X&; , |2X(s+sk
2i)|�&X&; ((t&s)�2k) ; and g # C#

L([0, T ]),
we obtain after performing the sum in (8),

} |
t

s
X({) dg({) }�L &X&; (t&s)#+L &X&;

(t&s) ;+#

2 ;+#&2
. K
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Corollary 5.2. Let =>0 and let ;, #, g and T be as in Corollary 5.1.
Then, for every s # [0, T ] and t # [s, s+=],

"|
t

s
X({) d{";

�&X&� =1&;(1+= ;), (9)

and

"|
t

s
X({) dg({)";

�L &X&; =#&;(1+= ;) \1+
= ;

2 ;+#&2+ . (10)

Proof.

"|
t

s
X({) d{";

= max
t # [s, s+=] } |

t

s
X({) d{ }+ max

t1{t2 # [s, s+=]

|� t2
t1

X({) d{|

|t2&t1| ;

�&X&� (=+=1&;).

From Corollary 5.1 we obtain

max
t # [s, s+=] } |

t

s
X({) dg({) }�L &X&; =# \1+

= ;

2 ;+#&2+ , (11)

similarly we obtain

max
t1{t2 # [s, s+=]

|� t2
t1

X({) dg({)|

|t1&t2 | ; �L &X&; =#&; \1+
= ;

2 ;+#&2+ . (12)

The result (10) follows from (11) and (12). K

Lemma 5.3. Let b, _: [0, �)_R � R, 1�#>1�2, T, K, L>0. Sup-
pose b and _ are Lipschitz in x and t. Then there exists =1>0, such that for
all #>;>1&# and t # [s, s+=1], the operator Ft maps C;

K ([s, s+=1], a)
into itself.

Notation. We shall denote the Lipschitz coefficients of b and _ by B
and S respectively.

Proof. Let =>0 and t1 , t2 # [s, s+=]. It is sufficient to demonstrate
that &Ft X&;�K for a sufficiently small =>0.
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By the triangle inequality and by Corollary 5.2,

&Ft X&;�=#&;(1+= ;) \&b(t, X(t))&� =1&#+L &_(t, X(t))&;

_\1+
= ;

2 ;+#&2++ . (13)

Since b and _ are Lipschitz and X # C;
K ([s, s+=], a), it is easy to see that

&b(t, X(t))&��|b(s, a)|+B(=+K= ;), (14)

and

&_(t, X(t))&;�|_(s, a)|+S(=1&;+K )(1+= ;). (15)

Substituting (14) and (15) into (13), we obtain

&Ft X&;�=#&;(1+= ;) _ |b(s, a)|+B(=+K= ;)) =1&#

+L \1+
= ;

2 ;+#&2+ ( |_(s, a)|+S(1+= ;)(=1&;+K ))& . (16)

Since the right hand side is an increasing continuous function of = and
is 0 at ==0, it equals K at some =1 . For this choice of =1 (or any smaller =1),
Ft maps C;

K ([s, s+=1], a) into itself. K

Lemma 5.4. Assume the same hypothesis as in Lemma 5.3. Sup-
pose b is Lipschitz in t and x and _ # C1([0, �)_R) with _$t(t, x), _$x(t, x)
Lipschitz in x. Then there exists =2>0 such that for all #>;>1&# and
t # [s, s+=2], the operator Ft is a contraction on C;

K ([s, s+=2]).

Notation. We shall denote the Lipschitz coefficient of b by B and the
Lipschitz coefficient of _, _$t , _$x by S.

Proof. We need to show that there exist =2>0 and *<1 such that
for all t # [s, s+=2] and all X, Y # C;

K ([s, s+=2]),

&FtX&Ft Y&;�* &X&Y&; .
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By the triangle inequality and by Corollary 5.2,

&FtX&FtY&;�=#&;(1+= ;) _&b(t, X(t))&b(t, Y(t))&� =1&#

+L &_(t, X(t))&_(t, Y(t))&; \1+
= ;

2 ;+#&2+& . (17)

We estimate the two terms in (17) separately. Since b is Lipschitz,

&b(t, X(t))&b(t, Y(t))&��B |X(t)&Y(t)|�B &X&Y&; . (18)

Now we will estimate &_(t, X(t))&_(t, Y(t))&; . Since _ is differentiable,

max
t

|_(t, X(t))&_(t, Y(t))|�S &X&Y&; . (19)

By the fundamental theorem of calculus,

_(t, X(t))&_(t, Y(t))=(X(t)&Y(t)) |
1

0
_$x(t, &X(t)+(1&&) Y(t)) d&.

Therefore

|_(t1 , X(t1))&_(t1 , Y(t1))&_(t2 , X(t2))+_(t2 , Y(t2))|

= } (X(t1)&Y(t1)&X(t2)+Y(t2)) |
1

0
_$x(t1 , &X(t1)+(1&&) Y(t1)) d&

+(X(t2)&Y(t2)) |
1

0
(_$x(t1 , &X(t1)+(1&&) Y(t1))

&_$x(t2 , &X(t2)+(1&&) Y(t2))) d& }
�&X&Y&; (t2&t1) ; S+&X&Y&; (S(t2&t1)

+S(& |X(t1)&X(t2)|+(1&&) |Y(t1)&Y(t2)| ))

�&X&Y&; (t2&t1) ; S(1+(t2&t1)1&;+K ).

Consequently

&_(t, X(t))&_(t, Y(t))&;�&X&Y&; S(2+=1&;+K ). (20)
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Substituting (19) and (20) in (17), we obtain

&Ft X&Ft Y&;�=#&;(1+= ;) _B=1&#+LS(2+=1&;+K )

_\1+
= ;

2 ;+#&2+& &X&Y&; . (21)

The coefficient of &X&Y&; is an increasing function of = and is 0 at ==0.
Choose =2>0 small enough so that this coefficient is less than 1 and
=2�=1 . Then F is a contraction on C;

K ([s, s+=2]). K

Combining Lemmas 5.3 and 5.4, we obtain a local existence and
uniqueness result:

Corollary 5.5. Assume the same hypothesis as in Lemma 5.4. Then
there exists =>0 depending on s such that for all t # [s, s+=], ODE (3)
has a unique solution in C;

K ([s, s+=], a). In particular, if ODE (3) has a
solution X on [0, s], then there exists =>0 depending on s such that for
all t # [s, s+=], ODE (3) has a unique solution Y in C;

K ([s, s+=], X(s)).

Proof. Take = to be =2 of Lemma 5.4. Since Ft is a contraction on the
closed subset C;

K ([s, s+=], a) of the complete metric space C ;([s, s+=]),
it has a unique fixed point X in C;

K ([s, s+=], a). From the definition of
Ft it follows that X is a unique solution of ODE (3) on [s, s+=] in
C;

K ([s, s+=], a). K

The sufficient conditions on = in Corollary 5.5 are given by inequalities
(16) and (21) with a replaced by X(s):

=#&;(1+= ;) _ |b(s, X(s))|+B(=+K= ;)) =1&#

+L \1+
= ;

2 ;+#&2+ ( |_(s, X(s))|+S(1+= ;)(=1&;+K ))&�K, (22)

=#&;(1+= ;) \B=1&#+LS(1+=1&;+K ) \1+
= ;

2 ;+#&2++<1. (23)

Inequality (23) does not depend on X(s).

5.4. Proof of Theorem 3: Global Existence and Uniqueness

By Corollary 5.5 with s=0 and a=x0 , ODE (3) has a unique solution
on [0, =0], where =0 satisfies (22) and (23) with s=0. By using Corollary 5.5
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n times we obtain that the solution exists on [0, =0+ } } } +=n&1]. ODE (3)
has a solution on [0, T ] if there exists m>0 such that �m

i=0 =i�T. This
is true if b and _ are globally bounded, since in this case we can choose
=i==0 (to see this we can substitute the global bounds on b, _, B, S into
(22) and (23)). In the case when b and _ grow at most linearly, we will use
a change of variables to reduce it to the case of globally bounded b and _.

Proof. Existence: Suppose that b and _ are bounded on [0, �)_R,
then taking the upper bound on b and _ in (22) we get that =i satisfying
(22) and (23) does not depend on i. In this case the global existence is
established. Now suppose that b and _ satisfy the assumptions of Theorem 3.
Consider the ODE

dy(t)=
b(t, tan y(t))

1+(tan y(t))2 dt+
_(t, tan y(t))

1+(tan y(t))2 dg(t) (24)

This ODE has globally bounded coefficients satisfying the assumptions of
Theorem 3, and thus has a global solution on [0, T ]. Now, x(t)=tan y(t)
satisfies Eq. (3) (by Lemma 2.1). Thus Eq. (3) has a global solution on
[0, T ].

Uniqueness: Let Y1 and Y2 be two solutions in C ;([0, T ]). Then there
exist K1 and K2 such that Y1 # C;

K1
([0, T ]) and Y2 # C;

K2
([0, T ]), so Y1

and Y2 are in C;
max[K1 , K2]([0, T ]). Y1 and Y2 coincide at the initial point

t=0. Let tsup be the supremum of the set on which they coincide. Since
both solutions are continuous, they coincide at tsup as well. tsup must equal T,
for otherwise we can make Y1 and Y2 coincide past tsup by Corollary 5.5. K

5.5. Proof of Itô's Formula for fBm (Lemma 3.1)

Proof. By analogy with the proof of Lemma 2.1, we obtain

v(t)&v(0)=|
t

0 \
�u
�s

+
�u
�'

e(s)+ ds+o(1)+|
t

0

�u
�'

f (s) d!:

+
1
2

:
k�[2nt]

u'' f 2 2!2
:+o \: 2!2

:+ .

Since E(u'' f 2 2!2
:)�& f &� - E(u'')2

- E(2!4
:)=O(t�2n)2#, by Chebyshev

inequality

P \ :
k�[2nt]

u'' f 2 2!2
:�

1
n+�const

n
2n(2#&1) ,
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and by the Borel�Cantelli lemma �k�[2nt] u'' f 2 2!2
: � 0 as n � � a.e. An

analogous argument shows that o(� 2!2
:) � 0 as n � � a.e. Thus Itô's

formula holds. K

5.6. Proof of Theorem 5

Proof. Since f is differentiable, and since !:( } , |) # C #([0, 1]) with
probability 1, for a.e. | there exists L(|)>0 such that

|2f (sk
2i , !:(sk

2i))|�| f $t |
t

2k+| f $x |
L(|) t#

2k#

holds. From Theorem 2 we get

} |
t

0
f ({, !:({)) d!:({) }�| f (0, 0)| L(|) t#+| f $t |

L(|) t#+1

2#+1&2
+| f $x |

L(|)2 t2#

22#&2

and so,

max
0�t�1 } |

t

0
f({, !:({)) d!:({) }�| f (0, 0)| L(|)+| f $t |

L(|)
2#+1&2

+| f $x |
L(|)2

22#&2
.

Therefore

P {| : max
0�t�1 } |

t

0
f ({, !:({)) d!:({) }>*=

�P {| : | f (0, 0)| L(|)+| f $t |
L(|)

2#+1&2
+| f $x |

L(|)2

22#&2
>*=

�P[| : L(|)>&]

�P[| : _t1 , t2 # [0, 1] s.t. |!:(t2)&!:(t1)|>& |t2&t1| #],

where & is given by (6).
It is easy to see that if

}!: \k+1
2n +&!: \ k

2n+ }�2#&1
2#+1

L(|)
2n# , \n>0, 0�k�2n&1,

then

|!:(t2)&!:(t1)|�L(|) |t2&t1| #, \t1 , t2 # [0, 1].
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Therefore

P[| : _t1 , t2 # [0, 1] s.t. |!:(t2)&!:(t1)|>& |t2&t1| #]

�P {| : _n>0, 0�k�2n&1, s.t. }!: \k+1
2n +&!: \ k

2n+ }>2#&1
2#+1

&
2n#=

� :
�

n=1

:
2n&1

k=0

P {| : }!: \k+1
2n +&!: \ k

2n+ }>2#&1
2#+1

&
2n#=

� :
�

n=1

2n �2
? |

�

(2#&1)�(2#+1) &2n$
e&x2�2 dx.

Using the estimate ��
c e&x2�2 dx�e&c2�2�c, we obtain the desired result. K

5.7. Proof of Statement 4.1

Proof. The proof will be reached via the step-by-step procedure used
for oBm. Fix t>0.

Step 1. Let ,: [0, �) � R, be a simple function of the form
�2n&1

i=0 ,(sn
i ) /[s i

n , sn
i+1] , where / is an indicator function and sn

i =(i�2n) t.
Define

|
t

0
,({) d!:({)= :

2n&1

i=0

,(sn
i ) 2!:(sn

i )

Step 2. Let g # C�([0, �)). Approximate g by a sequence of simple
functions: ,n({)=�2n&1

i=0 g(sn
i ) /[s i

n , sn
i+1]({). Then ,n � g uniformly on [0, t]

and �t
0 | g({)&,n({)|2�(1+:) d{ � 0. Therefore the sequence ,n is Cauchy in

L2�(1+:)([0, �)). To show that the sequence �t
0 ,n({) d!:({) is Cauchy in

L2([0, �)_0), we use the Hardy�Littlewood�Sobolev inequality:

E \|
t

0
,m({) d!:({)&|

t

0
,n({) d!:({)+

2

=C:(:+1) |
t

0
|

t

0

(,m(u)&,n(u))(,m(v)&,n(v))
|u&v|1&: du dv

�const } &,m&,n&2
2�(1+:) � 0 as m, n � �.

Thus the integral �t
0 g({) d!:({) exists as the L2-limit of �t

0 ,n({) d!:({).

Step 3. Let f # L2�(1+:)([0, �)). Let j # C�
c ([0, �)) with �[0, �) j=1.

Define jn({)=(1�n) j(n{) and gn= jn V f. Then gn # C�([0, �)) and
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�t
0 | gn({)& f ({)|2�(1+:) d{ � 0. In particular, the sequence gn is Cauchy in

L2�(1+:)([0, �)). The Hardy�Littlewood�Sobolev inequality gives

E \|
t

0
gm({) d!:({)&|

t

0
gn({) d!:({)+

2

�const } &gm& gn&2
2�(1+:) � 0 as m, n � �.

Thus the integral �t
0 f ({) d!:({) exists as an L2-limit of �t

0 gn({) d!:({).
Thus, for all f # L2�(1+:)([0, 1]), we can choose simple functions ,n

converging in L2�(1+:) to f such that the L2-limit of �t
0 ,n({) d!:({) exists. K

5.8. Proof of Statement 4.2

5.9. Lemmas

We begin with three lemmas. The first is Slepian's lemma.(23, 5)

Lemma 5.6 (Slepian). Let 1 be a countable set, and let X(t), Y(t)
be two real zero-mean Gaussian processes indexed by t # 1. Suppose EX 2(t)
=EY2(t) and EX(s) X(t)�EY(s) Y(t) for all s, t # 1. Then, for all real *,
P(maxt # 1 X(t)�*)�P(maxt # 1 Y(t)�*).

Consequently, if X and Y have continuous versions, Lemma 5.6 holds
when the index set 1 is [0, 1].

The next lemma gives us Markov property.

Lemma 5.7. Let :, f be as in Theorem 4.1, and let 0<;<:.
Suppose f �0. Then there exists a Gaussian Markov process Y(t) with
independent increments and continuous paths such that EY(t)=0 and
EY(s) Y(t)=qf (0, s)=�s

0 �s
0 f (u) f (v)(du dv�|u&v|1&:) whenever s�t.

Proof. For f �0 the correlation function qf (0, s) is non-decreasing.
It is also non-negative definite. Indeed, for any c1 , ..., cn , and s1� } } } �sn ,

E \ :
n

i=1

ciY(si)+
2

= :
n

i, j=1

cicjqf (0, si)

= :
n

i=1
\c2

i +2 :
i< j

cicj+ qf (0, si)

= :
n

i=1

((ci+ } } } +cn)2&(ci+1+ } } } +cn)2) qf (0, si)

=(c1+ } } } +cn)2 qf (0, s1)

+ :
n

i=2

(ci+ } } } +c2)2 (qf (0, si+1)&qf (0, si))�0,

where the last inequality is strict unless f vanishes on some interval.
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To show that a process is Markov, it is sufficient to show that its non-
overlapping increments are independent. For a Gaussian process this
amounts to checking that any two non-overlapping increments are
uncorrelated: for s1<t1<s2<t2 ,

E(Y(t1)&Y(s1))(Y(t2)&Y(s2))

=EY(t1) Y(t2)&EY(t1) Y(s2)&EY(s1) Y(t2)+EY(s1) Y(s2)

=qf (0, t1)&qf (0, t1)&qf (0, s1)+qf (0, s1)=0

Since Y(t) is a Gaussian Markov process with independent increments, it
can be represented as a deterministic time change of a brownian motion:

Y(t)=B(qf (0, t)).

Thus it has a continuous version. K

Finally, we have a reflection principle:

Statement 5.8. Let Y(t) be a zero-mean Gaussian Markov process
with independent increments and continuous paths. Then for all *>0 and
T�0, P(max0�t�T Y(t)�*)=2P(Y(T )�*).

The proof is exactly analogous to the oBm case, since Y(t) is a deter-
ministic time change of a Brownian motion.

Now we are ready to prove Theorem 4.2.

5.9.1. Proof of Part (1)

Proof. Choose an integer m such that (:&;) m>1. Then

E \|
t

0
f ({) d!:({)&|

s

0
f ({) d!:({)+

2m

�const } \E \|
t

0
f ({) d!:({)&|

s

0
f ({) d!:({)+

2

+
m

=\C:(:+1) |
t

s
|

t

s

f (u) f (v)
|u&v|1&: du dv+

m

�const } |s&t| (:&;) m,
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where the first inequality holds because �t
0 f ({) d!:({) is a Gaussian random

variable, and the second by the Hardy�Littlewood�Sobolev inequality:

qf (s, t)=C:(:+1) |
t

s
|

t

s

f (u) f (v)
|u&v|1&: du dv

�C:(:+1) |s&t|:&; |
t

s
|

t

s

f (u) f(v)
|u&v|1&; du dv

�const } |s&t|:&; & f &2
2�(1+;) . (25)

By Kolmogorov's criterion the process �t
0 f ({) d!:({) admits a continuous

version. K

5.9.2. Proof of Part (2)

Proof. Let X(t)=�t
0 f ({) d!:({). X(t) is a Gaussian process with

EX(t)=0 and EX(s) X(t)=�s
0 �t

0 f (u) f (v)(du dv�|u&v|1&:). Define Y(t) to
be a Gaussian process with EY(t)=0 and EY(s) Y(t)=qf (0, s) for s�t, as
in Lemma 5.7. Clearly EX(t)2=EY(t)2.

Suppose f �0. Then EX(s) X(t)�EY(s) Y(t) for s, t # [0, 1]. Therefore
the processes X(t) and Y(t) satisfy the assumptions of Slepian's lemma
(Lemma 5.6). By Lemma 5.7, Y(t) is a Markov process with independent
increments and continuous paths, and by Statement 5.8, Y obeys the reflec-
tion principle:

P( max
0�t�1

Y(t)�*)=2P(Y(1)�*)=|
�

*�- qf (0, 1) �
2
?

e&x2�2 dx.

Hence for f�0,

P( max
0�t�1

X(t)�*)�|
�

*�- qf (0, 1) �
2
?

e&x2�2 dx.

Let f # L2�(1+;)([0, �)). Write X\(t)=� t
0 f\({) d!:({). Define processes

Y\(t) by replacing f by f\ in the definition of Y(t). Since Slepian's lemma
applies also to &X&(t) and Y&(t), we have

P( max
0�t�1

\X\(t)�*)�|
�

*�- qf\
(0, 1) �

2
?

e&x2�2 dx.
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Therefore

P( max
0�t�1

X(t)�*)=P( max
0�t�1

X+(t)+ max
0�t�1

(&X&(t))�*)

�P( max
0�t�1

X+(t)�*r)+P( max
0�t�1

(&X&(t))�*(1&r))

�|
�

*r�- qf+
(0, 1)

+|
�

*(1&r)�- qf&
(0, 1) �

2
?

e&x2�2 dx. K

5.9.3. Proof of Part (3)

Proof. Inequality (25) shows that - qf (s, t)�const } |s&t| (:&;)�2, so

|
�

1
sup

|s&t|<m&x2
- qf (s, t) dx<�.

This is the condition of applicability of Fernique's inequality, (24) of which
the claim is a direct consequence. K
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